Si alguna vez te han dicho «siento que las cosas se están enfriando», sabes que algo no anda bien.
Lo mismo ocurre con el interior del planeta Tierra, que tiene un núcleo que ha permanecido extremadamente caliente durante más de 4 mil 500 millones de años, pero que lenta e inevitablemente se va enfriando. El núcleo de la Tierra es clave para la vida, así que si algún día se apaga, el planeta mismo se convertirá en una gigantesca roca fría e inerte.
Ahora, en una reciente investigación, un equipo de científicos calculó que ese enfriamiento está ocurriendo más rápido de lo que se creía. Este enfriamiento ocurre en escalas de miles de millones de años, así que por más rápido que fuera, ninguno de nosotros estaremos vivos para ver cómo sería esa fría muerte del planeta.
Los expertos, sin embargo, coinciden en que investigar estos procesos naturales es clave para comprender mejor la evolución de la Tierra y los fenómenos que afectan la vida en el planeta.
El núcleo de la Tierra es una región ubicada a casi 3 mil 000 km de profundidad de la corteza terrestre, con un radio de 3 mil 500 km. Las temperaturas del núcleo pueden fluctuar entre los 4 mil 400° C y los 6 mil 000° C, una temperatura similar a la del Sol. El núcleo interno es una esfera sólida, compuesta mayormente de hierro. El núcleo externo está hecho de un líquido maleable compuesto de hierro y níquel. Es en el núcleo externo donde se forma el campo magnético de la Tierra, que protege al planeta de los peligrosos vientos solares.
La colosal cantidad de energía térmica que emana del interior del planeta pone en marcha fenómenos como la tectónica de placas y la actividad volcánica. Además, en la fronteras del núcleo ocurre un proceso que fue la clave del nuevo estudio: la convección del manto, que se refiere a la transferencia de calor desde el núcleo hacia el manto.
Los científicos no saben con precisión cuánto tiempo tomará para que la Tierra se enfríe al punto que dejen de ocurrir los fenómenos naturales que impulsa el núcleo, o que desapareciera el campo magnético, por ejemplo. Un equipo del Instituto Federal Suizo de Tecnología de Zúrich (ETH) y de la Institución Carnegie de Ciencia, en Estados Unidos, cree que la clave para resolver ese misterio está en los minerales que transportan calor del núcleo hacia el manto.
Esta región fronteriza está formada principalmente por un mineral llamado bridgmanita, que tiene una estructura de cristal y solo puede existir bajo grandes presiones, a partir de unos 700 km de profundidad. No existe ninguna tecnología que permita excavar y estudiar los minerales a esa profundidad, así que Motohiko Murakami, profesor del ETH, diseñó un experimento para simular esas condiciones en el laboratorio.